The Caulobacter crescentus GTPase CgtAC is required for progression through the cell cycle and for maintaining 50S ribosomal subunit levels.

نویسندگان

  • Kaustuv Datta
  • Jennifer M Skidmore
  • Kun Pu
  • Janine R Maddock
چکیده

The Obg subfamily of bacterial GTP-binding proteins are biochemically distinct from Ras-like proteins raising the possibility that they are not controlled by conventional guanine nucleotide exchange factors (GEFs) and/or guanine nucleotide activating proteins (GAPs). To test this hypothesis, we generated mutations in the Caulobacter crescentus obg gene (cgtAC) which, in Ras-like proteins, would result in either activating or dominant negative phenotypes. In C. crescentus, a P168V mutant is not activating in vivo, although in vitro, the P168V protein showed a modest reduction in the affinity for GDP. Neither the S173N nor N280Y mutations resulted in a dominant negative phenotype. Furthermore, the S173N was significantly impaired for GTP binding, consistent with a critical role of this residue in GTP binding. In general, conserved amino acids in the GTP-binding pocket were, however, important for function. To examine the in vivo consequences of depleting CgtAC, we generated a temperature-sensitive mutant, G80E. At the permissive temperature, G80E cells grow slowly and have reduced levels of 50S ribosomal subunits, indicating that CgtAC is important for 50S assembly and/or stability. Surprisingly, at the non-permissive temperature, G80E cells rapidly lose viability and yet do not display an additional ribosome defect. Thus, the essential nature of the cgtAC gene does not appear to result from its ribosome function. G80E cells arrest as predivisional cells and stalkless cells. Flow cytometry on synchronized cells reveals a G1-S arrest. Therefore, CgtAC is necessary for DNA replication and progression through the cell cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Caulobacter crescentus CgtAC protein cosediments with the free 50S ribosomal subunit.

The Obg family of GTPases is widely conserved and predicted to play an as-yet-unknown role in translation. Recent reports provide circumstantial evidence that both eukaryotic and prokaryotic Obg proteins are associated with the large ribosomal subunit. Here we provide direct evidence that the Caulobacter crescentus CgtA(C) protein is associated with the free large (50S) ribosomal subunit but no...

متن کامل

A Quantitative Study of the Division Cycle of Caulobacter crescentus Stalked Cells

Progression of a cell through the division cycle is tightly controlled at different steps to ensure the integrity of genome replication and partitioning to daughter cells. From published experimental evidence, we propose a molecular mechanism for control of the cell division cycle in Caulobacter crescentus. The mechanism, which is based on the synthesis and degradation of three "master regulato...

متن کامل

The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase.

CgtA(E)/Obg(E)/YhbZ is an Escherichia coli guanine nucleotide binding protein of the Obg/GTP1 subfamily whose members have been implicated in a number of cellular functions including GTP-GDP sensing, sporulation initiation, and translation. Here we describe a kinetic analysis of CgtA(E) with guanine nucleotides and show that its properties are similar to those of the Caulobacter crescentus homo...

متن کامل

Developmental and environmental regulatory pathways in alpha - proteobacteria ARDISSONE , Silvia , VIOLLIER

Spatial and temporal control of cell differentiation and morphogenesis plays a key role in prokaryotes as well as eukaryotes. This is particularly important for bacteria that divide asymmetrically, as they generate two morphologically and functionally distinct daughter cells. Several alpha-proteobacteria, including the aquatic, free-living Caulobacter crescentus, the symbiotic rhizobia and the ...

متن کامل

The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation.

The highly conserved SMC (Structural Maintenance of Chromosomes) proteins function in chromosome condensation, segregation, and other aspects of chromosome dynamics in both eukaryotes and prokaryotes. A null mutation in the Caulobacter crescentus smc gene is conditionally lethal and causes a cell cycle arrest at the predivisional cell stage. Chromosome segregation in wild-type and smc null muta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular microbiology

دوره 54 5  شماره 

صفحات  -

تاریخ انتشار 2004